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Biological processes

* Examples:
— Pathways
— Signaling
— Cell cycle
— Growth of an organism
— Response of a system to perturbations

* Currently, no standard DB design

* Several new 1deas, initiatives...



Biological complexity

Biological data are inherently complex
More complex than physics, astronomy
Several different sources of complexity

Data handling: difficult, serious problem



[ _evels of abstraction

Molecular structures
Polymers (DNA, protein)
Features: genes, domains,...
Complexes

Cells, compartments
Tissues, and so on...

— Makes data modelling hard



No law without an exception

There are very few biological natural laws
Most proper laws from physics, chemistry

Many common mechanisms and structures

But, always an exception somewhere

— Makes data modelling hard



Knowledge Representation

* Ontology
— What exists: entities, objects, items
— What relationships: associations, relations

* Important tools:
— Is-a relationships: classes, inheritance
* JNKI1 1s a kinase, 1s an enzyme, is a protein

— Part-of relationship: composition
* Nucleosome: DNA + histone octamer



Criteria for Knowledge
Representation systems

* Match the scientist’s view of the universe
— Use domain-specific terms, concepts
— Avoid novel or alien concepts

* Focused: clear domain definition

* Formalize information
— Allow computation
— Allow database, publication

— Implement uncertainty, updates, deletions



What data 1s represented, and how

* Explicit data model should be required
* Self-evident? No.

— Many DBs have unclear semantics
— Implicit assumptions are dangerous

— Important additional data overlooked



Choice of data model has
consequences

* Directly
— Missing data
* Some compounds are considered implicit
— Conflated entities
* Is ”Fe” in KEGG Fe**or Fe3+ ?
* Indirectly
— Some analysis becomes harder

— Constrains future extensions



Metabolic pathway DBs

* Missing data (typically):

AMP + ATP — Species
— Cellular locati
Adenylate kinase crariocation
— During what processes?
— Kinetic parameters
2 ADP

— Literature refs



Metabolic pathway DBs: problems

* More chemical than biological
— Enzymes, proteins do not have states
— Ill-defined connection to life processes

* No notion of classes or inheritance

— Compounds, enzymes, reactions: that’s it

* Weak description of relationships
— Homology?
— Arbitrary pathway demarcations



Signaling pathway description
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Proteomics DBs

Interactions between proteins
— Literature; review-like (BIND)

Oriented towards omics data
— Experimental values (DIP)

Weak connection to metabolic DBs
Proteins only, usually



Kohn interaction maps

- — * Kohn, Mol Biol Cell
T = (1999) 10, 2703-2734

* Representation of
networks

* Proteins, complexes,
modifications

* No dynamics

* Map only, no DB

=S | ° Faﬂure, but intﬁreSting



What’s missing?
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GeneCV

Model genes, proteins, complexes
Follow the life of a gene product
Molecular events

Refer to cellular process; do not model
explicitly (for now)

Based on Statecharts

Consider: class relationships



Statecharts

David Harel 1987

State-transition diagrams, extended with
— Hierarchy
— Orthogonality

— Communication

Designed for large reactive systems: event-
driven, reacting to external and internal stimuli

Now part of UML



Statecharts literature

* David Harel & Michal Politi, Modeling Reactive
Systems with Statecharts, McGraw-Hill (1998).

* David Harel, Statecharts: A visual formalism for
complex systems, Sci Comp Prog (1987) 8, 231-274.

* Naaman Kam, David Harel, Irun R Cohen, Modeling
Biological Reactivity: Statecharts vs Boolean Logic,
Proc 2nd Conf Systems Biology (Nov 2001)
Pasadena, CA, USA



Statecharts: states and events
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Statecharts: state hierarchy
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Statecharts: state orthogonality
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Statecharts: conditions

Debug_command
[User_1s_admin]




Statecharts: actions
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Nucleosomes: from DNA to chromosome
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Dynamic nucleosomes

sequence-specific
DNA-binding proteins
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Nucleosome structure
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Nucleosome components
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Nucleosome X-ray structure

Luger et al, Nature (1997) 389, 251



Histone tails
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Covalent modifications
= Posttranslational modifications (PTMs)

* (Chemical structure 1s
modified

* Done by enzymes

* Some reversible,
others 1rreversible

* Binding properties
change: protein
complex formation

Phosphate | Ser, Thr | Kinase

-OPO, Tyr Phosphatase
His

Acetyl Lys Acetylase

-Ac Deacetylase

-COCH,

Methyl Lys Methylase

-Me Arg Demethylase

-CH,

Ubiquitin | Lys Ubiquitin

-Ubq ligase




Example PTM Statechart: Lys
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Histone tail modifications
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Functions of histone tail marks
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Local binary switch: methyl/phos
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Clusters of histone marks
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Putative methyl/phos switches
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Putative switches 1n other proteins
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Local binary switch: states
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Local binary switch: orthogonality?
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Typical state change(s) 1n signaling

Li et al, Nature (2002) 420, 716



GeneCV 1ssues:
terms and concepts must be adapted

* Creation and destruction of
proteins, complexes:

— Central to biology
— Not a primitive 1n Statecharts

* Hardwire some states?

— Location

* Events (broadcast) irrelevant?



GeneCV 1ssues:
phenomenon vs mechanism

* States describing phenomena:
— Active vs 1nactive
— Binding vs non-binding

* States describing mechanism:
— Phosphorylated or not
— Folded vs unfolded

* How relate?

— Combine to one state?
— Relate two separate states?



GeneCV i1ssues:
object classes and inheritance

Objects should belong to classes
Should all objects be classes?

Inherit properties from parent classes:
— JNKI1 1s a tyrosine kinase
— A tyrosine kinase 1s an ATP-dependent kinase
— A kinase 1s an enzyme
— An enzyme 1s a protein

Classes for states and transitions?



GeneCV 1ssues:
state classes and inheritance?

* Classes for states (and transitions?)
* More powertul than generic states

* Ramifications?



GeneCV 1ssues:
implementation

Graphics: same level as ol

hjects?

Update and modification
Consistency checks

Computational tools

policies?



GeneCV i1ssues:
extensions to higher levels
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