Bioinformatics for biomedicine

Course, 1 credit point

Per Kraulis

Goals for this course

- Introduction to bioinformatics
- Databases
 - Contents, background
- Analysis methods
 - Algorithms, properties, background
- Basic search and analysis
 - Applied to some problems of interest

Practical details

http://biomedicum.ut.ee/~kraulis

Time: Tuesday 14-16

Room: 1024, Biomedicum

Email: per.kraulis@ut.ee

Phone: 737 4052

Course design

- 1. What is bioinformatics? Basic databases and tools
- 2. Sequence searches: BLAST, Fasta
- 3. Multiple alignments, phylogenetic trees
- 4. Protein domains and 3D structure
- 5. Seminar: Sequence analysis of a favourite gene
- 6. Gene expression data, methods of analysis
- Gene and protein annotation, Gene Ontology, pathways
- 8. Seminar: Further analysis of a favourite gene

Bioinformatics?

 "Information technology applied to the management and analysis of biological data" Attwood & Parry-Smith 1999

 "Collection, archiving, organization and interpretation of biological data"

Thornton 2003

Databases (DB)

- Sets of data
- Stored on computer

- Explicit data model
 - What is in the DB? What is not?
 - Well-defined data structure

Analysis methods

- Searches
 - Keywords or free text
 - Similarity
- Comparison
 - Sequence-sequence alignment
 - Structures
- Features
 - Identification of (sites, domains)
 - Prediction of (secondary structure)

Important web sites

EBI

- www.ebi.ac.uk/
- European Bioinformatics Institute
- Databases: EMBL, UniProt, Ensembl,...

NCBI

- www.ncbi.nlm.nih.gov/
- National Center for Biotechnology Information
- Databases: PubMed, Entrez, OMIM,...

Historical background, 1

- "Atlas of Protein Sequence and Structure", Margaret Dayhoff et al 1965
 - Printed book with all published sequences
 - New editions into the 1970s
 - Basis for Protein Information Resource (PIR), pir.georgetown.edu/
 - Since 2003 part of UniProt, www.uniprot.org/

Historical background, 2

SwissProt

- Amos Bairoch, University of Geneva
- Swiss Institute of Bioinformatics, http://www.isb-sib.ch/
- Data from literature, carefully curated
- Started in 1986
- Since 2003 part of UniProt http:// www.uniprot.org/

DB properties

- Quality
 - Error rates, types of errors
 - Update policy
- Comprehensiveness
 - Data sources
- Redundancy
 - Multiple entries for same biological item?

Consider when choosing a DB

- Central data type
- Data entry and quality
- Primary or derived data
- Maintainer status
- Availability

Central data types

- Nucleotide sequences
 - EMBL, GenBank
- Protein sequences
 - UniProt (PIR, Swiss-Prot)
- Genes, genomes
 - Ensembl, EntrezGene
- 3D structure
 - PDB (RSCB)

Data entry and quality

- Method of data entry
 - Scientists deposit data
 - Curators enter data (from literature)
- Quality control
 - Consistency, redundancy, conflicts
 - Are checks applied?
- Update policy
 - Regularity
 - Are errors removed?

Primary or derived data?

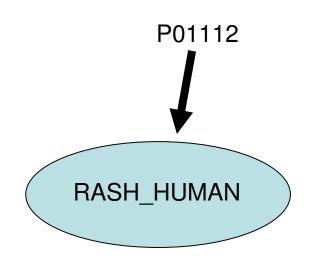
- Primary data
 - Experimental data, more or less
 - Sequences, 3D structure, expression data
- Derived data
 - Obtained by analysis methods
 - Domains, secondary structure
- Aggregated data
 - Unified from several data sources

DB vs. Interface

- Confusion: Interface is not same as DB!
- Interface is the method of access
- Database (DB) is the data itself

- Same DB accessed by different interfaces (UniProt from ExPASy or EBI)
- One interface may be used to access different databases (SRS)

Maintainer status


- Large, academic, public institute
 - EBI, NCBI
- Quasi-academic institute
 - TIGR, SIB
- Research group or scientist
- Company

Availability

- Publicly available, no restrictions
 - EMBL, GenBank
- Available, but with copyright
 - May not be re-used in other DB
 - UniProt
- Commercial
 - Copyright
 - May be accessible to academics at no charge

DB identifiers

- Identify a DB item uniquely
- A primary key for an item
 - Unique
 - Permanent
- "Accession code"
 - E.g. P01112
 - Use this for UniProt, EMBL, etc
- "Entry name"
 - E.g. RASH_HUMAN
 - Warning: may change!

Accession codes and updates

- DB items may be merged or split
 - Two sequence entries merged, e.g. they were actually the same protein
 - A sequence entry split, e.g. actually from two different genes
- Primary accession code
 - The new, recommended code
- Secondary accession code
 - The old; kept for trackability
- Version numbers in some DBs

Nucleotide sequence DBs

- Primary
 - EMBL, www.ebi.ac.uk/embl
 - GenBank, www.ncbi.nlm.nih.gov/GenBank
- Collaboration and synchronization
- Data submitted directly from sequencing projects, scientists
- Large, with subdivisions
- Redundant, fragments, rather messy...
- http://www.ebi.ac.uk/cgi-bin/expasyfetch?AF4939
- Publicly available, no restrictions

Genome DBs, 1

- Nucleotides, but complete genome
- Usually high quality, careful annotation
- Ensemble
 - www.ensembl.org
 - Eukaryotes
 - Automatic annotation, links to other DBs
 - http://www.ensembl.org/Homo_sapiens/geneview?gen
- Vega
 - http://vega.sanger.ac.uk/
 - Manually curated, built on top of Ensemble

Genome DBs, 2

- UniGene
 - www.ncbi.nlm.nih.gov/UniGene
 - "An organized view of the transcriptome"
- EntrezGene (LocusLink)
 - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
- Species-specific databases
 - SGD, Saccharomyces cerevisiae, www.yeastgenome.org
 - Berkeley Drosophila Genome Project, www.fruitfly.org

Protein sequence DBs

UniProt

- www.uniprot.org
- UniProtKB = UniProt Knowledge Base
- UniProt = Swiss-Prot + PIR + TrEMBL
- Swiss-Prot
 - Credible sequences
 - Manual expert annotation
- TrEMBL
 - Translations of EMBL nucleotide sequences
 - Automatic, basic annotation
 - Eventually integrated into Swiss-Prot

UniProt

- ExPASY interface (Swiss Inst Bioinfo)
 - http://www.expasy.org/uniprot/P01112
- EBI interface
 - http://www.ebi.uniprot.org/uniprot-srv/uniProtVi
- Same data, different look; your choice

Protein sequence domains

- Domains, motifs, families
 - Patterns of similar residues in a section of a protein sequence
 - Often a functional and structural unit
 - The presence of a domain: hints on function
- Pfam
 - Protein sequence domains
 - www.sanger.ac.uk/Software/Pfam/
 - Hidden Markov Models, software HMMER

Macromolecular 3D structure

- Protein Data Bank, PDB
 - Oldest computer-based bio-DB (1971)
 - http://www.rcsb.org/pdb/
 - 3D structures of proteins, oligonucleotides
 - X-ray crystallography and NMR
- SCOP, Structural Classification
 - http://scop.mrc-Imb.cam.ac.uk/scop/
 - Hierarchical scheme of classification
 - Similar 3D structures in families

Others, 1

- OMIM
 - Online Mendelian Inheritance in Man
 - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
 - Human genes and genetic disorders
 - http://www.ncbi.nlm.nih.gov/entrez/dispomim.c

Others, 2

- GeneCards
 - Aggregate database; human
 - Links from gene to other DBs
 - http://www.genecards.org/
- GeneLynx
 - Aggregate database; human, rat, mouse
 - Links from gene to other DBs
 - http://www.genelynx.org/