Bioinformatics for biomedicine

Protein domains and 3D structure

Lecture 4, 2006-10-10

Per Kraulis

http://biomedicum.ut.ee/~kraulis

Course design

- 1. What is bioinformatics? Basic databases and tools
- 2. Sequence searches: BLAST, FASTA
- 3. Multiple alignments, phylogenetic trees
- 4. Protein domains and 3D structure
- 5. Seminar: Sequence analysis of a favourite gene
- 6. Gene expression data, methods of analysis
- Gene and protein annotation, Gene Ontology, pathways
- 8. Seminar: Further analysis of a favourite gene

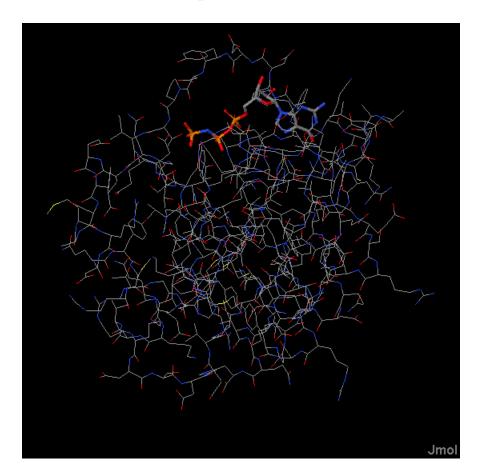
Multiple alignment

- Example: ras proteins
- FASTA input file available at course site
- http://www.ebi.ac.uk/Tools/sequence.html
 - ClustalW, MUSCLE
- http://msa.cgb.ki.se/cgi-bin/msa.cgi
 - Kalign

Proteins and drug action

- Most drugs act via proteins
 - Binds to the protein
 - Inhibits or activates it

- "Drug targets"
 - Small subset of all proteins
 - Certain protein families
 - -3D structural basis

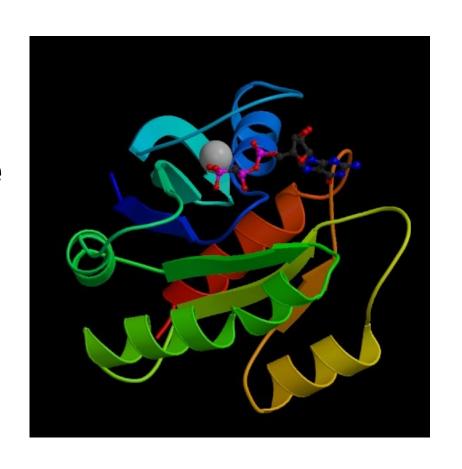

3D structure and protein function

- 'Native' state
 - Functional state
 - Well-defined 3D structure (usually)
 - Folded state

- Denaturing a protein inactivates it
 - Heat, salt, solvents... (boiling an egg)
 - Undefined 3D structure; a mess
 - Unfolded state

3D structures are complicated

- 1000's of atoms
- Hard to see anything
- But: details essential for understanding



Levels of 3D structure

- Primary
 - Protein sequence
- Secondary
 - Alfa helix, beta sheet; hydrogen bonds
- Tertiary
 - Overall 3D structure; "fold"
- Quaternary
 - Complex between biomolecules

Simplified view of 3D structure

- Schematic view
- Peptide chain
- Secondary structure
 - Alfa helix
 - Beta strands
- Ligands
 - Metal ions
 - Cofactors
 - Drugs

Structure database

- PDB database
 - 3D coordinates for structures
 - Protein, DNA, RNA, complexes
 - Experimentally determined structures
- At RCSB: http://www.rcsb.org/pdb/
- Via UniProt: http://www.ebi.uniprot.org/

Many different 3D viewers...

Experimental determination

- X-ray crystallography
 - Atomic resolution
 - Small and large molecules (ribosome)
- NMR
 - Small, soluble proteins
- Electron microscopy
 - Not atomic resolution
 - Very large molecules/particles

X-ray crystallography 1

- Requires protein crystal
 - Size 0.1-1.0 mm
 - Possibly with ligands, other proteins
 - Optimize conditions (salt, solvents,...)

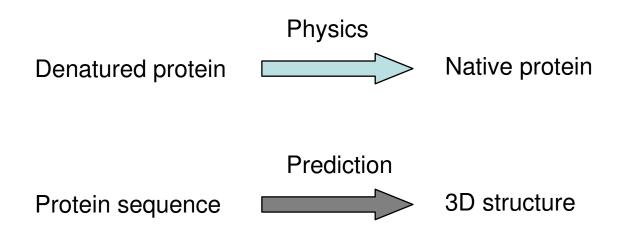
- Recent technological advances
- Structural Genomics Initiatives

X-ray crystallography 2

- Quality?
- Resolution
 - How much data was available?
 - Given in Ångström
 - Good: 2.0 Å or less
 - Bad: 3 Å or higher
- Refinement
 - How well do atomic coordinates agree with data?
 - R-value
 - Should be 20% or less

X-ray crystallography 3

- Is crystal state relevant?
- Short answer: Yes
 - High solvent content; similar to cell plasma
 - Comparisons indicate OK
- But: occasional relevant differences
 - Surface differences; loops
 - Details of ligand binding


Protein structure and prediction

- Secondary structure prediction
 - Typically 70-80% accurate
 - Not as good as it sounds
 - Always use experimentally derived data, when available
- 3D structure modelling
 - Based on known structure: predict similar
 - OK when sequence >90 % similar
 - Depends, when 50-90% similar
 - Problematic, when <50% similar

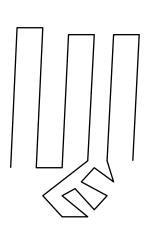
The folding problem 1

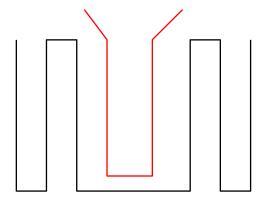
- 3D structure encoded in protein sequence
 - Anfinsen 1960s
 - Small proteins refold spontaneously
 - Synthetic peptides fold
 - Activity as for 'natural' protein
- Assisted folding does not change this
 - Chaperones: catalysts for folding
 - Needed in cell environment (thick soup)

The folding problem 2

- Protein sequence determines 3D structure
- 3D structure should be predictable
- But: notoriously hard (unsolved) problem

- Proteins appear to be modular
- 3D structure: pearls on a string
- Sequence: partial sequence similarity




- Proteins are modular
 - Particularly in eukaryotes
- A part of sequence as a unit
- The units are called domains
 - Partial gene duplication

- Domain families
 - Proteins containing a particular domain

- Sequence-based domain definitions
- Pfam
 - http://www.sanger.ac.uk/Software/Pfam/
 - Based on Hidden Markov Models (HMMs)
 - Statistical method to detect patterns
 - Sensitive
- Other domain databases
 - Structural: CATH http://www.cathdb.info/

- Domains from structure or sequence?
 - Usually very similar results
 - But some differences
 - Sequence region inserted
 - Structure formed from different parts of sequence

Protein families in medicine

- "Druggable" proteins
- Contains domains known to bind drugs
 - Small subset of proteins
- Usually: binds small molecules naturally
 - Enzymes
 - Receptors
- Protein-protein interactions very difficult
 - Much work, few results

Example: Nuclear receptors

- Transcription factors
 - 3D structures available for several
- Small-molecule ligands
 - Estrogen, progesteron,...
- Androgen receptor
 - ANDR_HUMAN, P10275
- Several drugs
 - Tamoxifen

Example: 7TM receptors

- 7TM = Seven transmembrane helices
- Receptors
 - CNS, other systems
- Maybe 50% of drugs act on these
- Integral membrane protein
 - Very hard for X-ray crystallography
 - No good 3D structure!

7TM: rhodopsin

- Light detector protein in eye
- 3D structure determined!
- Serves as model for other 7TM proteins
 - Known to be very approximate
- UniProt: OPSD_BOVIN, P02699
 - Retinal ligand shows binding pocket
 - In some 7TM proteins: different binding site

Example: protein kinases

- Regulatory proteins, signalling
 - Cancer
- Much recent work
 - Few drugs on market, yet
- Drug design strategy
 - Compete with ATP in its pocket
 - Specificity?
- UniProt: ABL1_HUMAN,P00519
 - PDB: 2F4J