Bioinformatics for biomedicine

Seminar: Sequence analysis of a favourite gene

Lecture 5, 2006-10-17
Per Kraulis

http://biomedicum.ut.ee/~kraulis

Course design

- 1. What is bioinformatics? Basic databases and tools
- 2. Sequence searches: BLAST, FASTA
- 3. Multiple alignments, phylogenetic trees
- 4. Protein domains and 3D structure
- 5. Seminar: Sequence analysis of a favourite gene
- 6. Gene expression data, methods of analysis
- Gene and protein annotation, Gene Ontology, pathways
- 8. Seminar: Further analysis of a favourite gene

From the previous lecture

- 3D structure
 - Relation to function
 - Methods of determination
 - Databases
- Domains
 - Definition
 - Relation to function
 - Databases

- Sequence determines structure
- Anfinsen's experiments: folding
- 3D structure prediction should work!
 - First principles (physics)
 - Extremely difficult
 - Only special cases
 - By similarity
 - Works reasonably
 - Depends on many factors

- Similar sequence -> similar structure
 - General statement
 - No "real" counterexamples
 - But a designed, extreme case exists
- A single 3D structure represents a family
 - Depending on sequence similarity
- Many sequences "allowed" for a structure

- Many sequences "allowed" for a structure
 - Sequence divergence possible over time

- Structure more conserved that sequence
 - Sequence may diverge beyond recognition
 - Structure may still be similar
 - Apparently unrelated sequences may form similar structures!

- Protein design
 - Target: A given structure
 - Specify a sequence that folds into it

- Some success in recent years
 - First principles approach
 - Computational prediction
 - Evolutionary approach
 - In vitro evolution experiments

- Example: TIM barrel
 - TIM = Triose isomerase
 - Example in PDB: 1TRI
 - Symmetrical, 8 alpha-beta units
 - Enzymes
 - Wide range of reactions, substrates
- Some TIM barrels have no significant sequence similarity
 - Sequence divergence?
 - Structure convergence?

Structure database

- PDB database
 - At RCSB: http://www.rcsb.org/pdb/
 - Via UniProt: http://www.ebi.uniprot.org/

- Many different 3D viewers
 - KiNG (uses Java)
 - RasMol (requires installation)

Unknown sequence?

- Given unknown sequence, what to do?
 - Set up a check list
 - Never optimal

- Note: Unrealistic exercise
 - "Premier tool of analytic chemistry: the phone"
 - Consider known facts before analysis
 - Consider the underlying problem

Check list, outline

- Where to search first?
 - UniProt
 - Pfam
 - Ensembl
- Function?
 - Annotation
 - Similarities
 - Domains, structure

Unk1

- File "unk1-seq.txt"
- Human protein
- No other info

Unk1 = Caspase 8

- Protease
 - Cysteine peptidase C14
 - Cascade, activation of others
- Hormone-triggered
 - TNF (tumor necrosis factor)
- Multicellular organisms
 - Apoptosis (programmed cell death)
 - Development, cancer

Unk2

- File "unk2-seq.txt"
- From C. elegans
 - Result of genetic screen
- Orthologue in human?

Unk2 = nhr-25

- Nuclear receptor (NR) family
 - Transcription factor
 - DNA-binding domain
 - Hormone-receptor domain
- Orphan NR
 - Unknown ligand; maybe none
- Multicellular organisms
 - Developmental processes
 - Moulting in insects

Unk3

- File "unk3-seq.txt"
- Mouse protein
- No other info

Unk3 = GPR141

- GPCR
 - G-protein coupled receptor
 - 7TM, seven transmembrane helices
- Orphan GPCR
 - Unknown ligand
- Human ortholog, Ensembl search
 - http://www.ensembl.org/Multi/blastview

Task for this week

- Perform analysis of sequences
 - http://biomedicum.ut.ee/~kraulis/bioinfo_bi
 - unk4-seq.txt (Danio rerio, zebrafish)
 - unk5-seq.txt (human, fragment)
- Organism?
- Protein family?
- Structure and function?
- Human medical relevance?