Bioinformatics for biomedicine

More annotation, Gene Ontology and pathways

Lecture 6, 2006-10-24 Per Kraulis

http://biomedicum.ut.ee/~kraulis

Course design

- 1. What is bioinformatics? Basic databases and tools
- 2. Sequence searches: BLAST, FASTA
- 3. Multiple alignments, phylogenetic trees
- 4. Protein domains and 3D structure
- 5. Seminar: Sequence analysis of a favourite gene
- 6. More annotation, Gene Ontology and pathways
- 7. Gene expression data, methods of analysis
- 8. Seminar: Further analysis of a favourite gene

Note: 6 and 7 swapped!

Task from previous lecture

- Unknown sequences
- Which analysis?
- How interpret results?
- Medical relevance?

Unk4

- Danio rerio (zebrafish) sequence
- BLAST
 - Ensembl (species specific): wee1
 - UniProt: Q1LYE1, Q6DRI0 (WEE1 homolog)
- Pfam: Protein kinase
- Cell cycle regulation
 - Negative regulator of G2 to M transition
 - Orthologues in human, and many other species
 - S. pombe: "wee"=small; mutant goes fast into M
 - Against cancer: activation wanted (difficult)

Unk5

- Human, fragment
- BLAST
 - Ensembl (species specific)
 - UniProt: SRBP1_HUMAN
- Pfam: basic helix-loop-helix
- Transcription factor
 - Regulation of lipid synthesis, colesterol
 - Orthologues in many species
 - Very interesting pathway
 - Not itself a good drug target; maybe indirectly through protease regulation

Annotation, so far

- Similarity, homology, orthology,....
- Domains, families
 - Structure, function

- Individual annotation (in a certain sense)
 - Each protein considered on its own
 - Functional relationships: only limited (indirect) information

Functional relationships

- Interactions
 - Genetic: indirect or direct
 - Physical: direct
- Regulation
 - Structural: Cell or tissue type
 - Temporal: Developmental stage
 - Co-regulation patterns
- Processes
 - Involvement, role

How to obain functional data?

- Traditional single-gene approaches
 - Works: good data, cross-checked
 - But: does not scale easily

- Genome-wide screens are now possible
 - Allows novel types of investigations
 - Approximate, rarely cross-checked

Genome-wide screening 1

- Genomes specify all genes
 - List of all genes is available, in principle
- Technologies for screening
 - Design a specific setup to identify all genes that are active

This allows genome-wide screening

Genome-wide screening 2

- Different from one-gene investigations
 - All genes investigated at once; overview
 - "Fishing expedition"

- Produces novel annotation
 - Genes X,Y,Z were "active" in condition W
 - Co-annotates proteins of unrelated sequence
 - Previously un-annotated genes highlighted

Screens give functional data

- Annotation from screens is functional
- Sequence only indirectly involved
- Experimental setup is crucial
 - Materials
 - Conditions
 - Detection scheme, measurement
- Requires new types of data analysis

Function (or, biology) of a gene

• = Activity of the gene product

- Functional properties
 - Chemistry
 - Interaction partners
- Biological process(es)
 - Location: tissues, cells
 - Temporal: development, conditions

Gene activity depends on... 1

- Activity requires gene product
 - Protein (occasionally RNA)
- Expression (mRNA synthesis) is a
 - necessary,
 - but not sufficient condition
- mRNA abundance: Sum of
 - Synthesis (expression)
 - Degradation

Gene activity depends on... 2

- Activity requires a functional state
 - mRNA synthesized, spliced, located,...
 - Protein synthesized, modified, located, folded,...
- Activity requires context
 - Interaction partners
 - Conditions
 - Signals

Gene expression 1

- Expression = mRNA level
 - Definition, or approximation?
- First genome-wide screen approach
- mRNA is technically easy to
 - Harvest
 - Identify
 - Quantify

Gene expression 2

- Note: mRNA levels not really of intrinsic biological relevance!
 - mRNA is just a messenger, after all

 Focus would be on proteins, if and when those as easy to handle

Gene expression is a proxy

- Reasonable first approximation
 - Expression required for activity
 - Protein vs. mRNA levels: correlated
 - Evolutionary optimization: why synthesize mRNA if not needed?
- Several confounding factors
 - Protein synthesis rate
 - mRNA degradation rate
 - Protein modification, folding, transport,...

Gene expression technologies 1

EST

- Expressed Sequence Tag
- Short (200-500 bp) sequence of DNA
- DNA derived from mRNA samples
- Sequence analysis required for identification
- Coarse quantification of mRNA levels
- Large databases exist

SAGE

- Serial Analysis of Gene Expression
- Very short (10-14 bp) sequences
- Some data, not as popular as ESTs

Gene expression technologies 2

- Microarrays
 - Predefined sets of sequences
 - Many spots on a slide/chip, each of which contains a specific sequence
 - cDNA: spotted glass slides (Brown, Stanford)
 - Oligonucleotide: microchips (Affymetrix)
 - Usually relative quantification (up, down)
 - Many different applications
- Other technologies exist
 - New inventions quite possible

Gene expression data

- Analysis is easy, but difficult...
 - Relative differences between samples
 - Statistically significant?
 - Comparison depends on technology
 - Compare between genes, or just gene to itself?
 - Experimental design
 - Crucial for proper analysis; statistics
- Databases combine data sets for analysis
 - Many issues; watch out

- Keywords in annotation
 - Labels for properties, function, etc
- Problem: different sets of keywords
 - Comparison difficult, or impossible
- 1998 GO Consortium
 - Project to specify a consistent set of keywords for gene annotation
- http://www.geneontology.org/

- Ontology: Existence and relationships
- Controlled vocabulary
 - Artificial Intelligence
 - Knowledge Representation
- Example: MeSH (Medical Subjects Headings) at NLM

- Hierarchy of keywords (=terms)
 - Specific terms are instances of general terms
 - Something may be part of something else
- Why?
 - Natural description in biology
 - To reflect level of knowledge
- Example: DNA metabolism
 - DNA integration
 - DNA ligation

Three separate hierarchies

- Molecular function
 - Chemical activity
- Cellular component
 - Location: nucleus, cytoplasm,...
- Biological process
 - Role in cellular events

Gene Ontology: applied

- For each gene, give the GO terms for which there is evidence: mapping
- As specific as evidence allows
- Evidence codes: source of statement
- Mapping produced by genome projects, not GO consortium
- Available in Ensembl, UniProt, etc

GO limitations

- Does not describe process, function or cellular component
 - Little spatial info
 - No temporal info
- Lacks many specific details
- Strictly limited: Is about terms (keywords)
- Extensions have been discussed
 - Should be done in independent way...

Proteomics 1

- Protein instead of mRNA
- Intrinsically biologically more interesting
- Technically much more difficult
 - Chemical properties
 - Different: no single protocol applicable
 - Same: hard to separate
 - How to identify? Sequencing not as simple
 - Quantification difficult

Proteomics: 2D gels

- Gel to separate proteins
- 2D: isoelectric point vs. mass
- Each spot detected, identified
 - Sequencing
 - Mass spectrometry
- Issues: many
 - Sensitivity
 - Comparison
- SwissProt http://www.expasy.org/ch2d/

Proteomics: in situ

- Detect protein in tissue sample
 - Issue: Tissue sample treatment?
- Antibodies against peptides
 - Issue: Which peptide?
- Immunostaining to visualize
- Protein Atlas http://www.hpr.se/

Protein interactions

- Use bait to fish out all interaction partners
 - Two-hybrid method
 - Coimmunoprecipitation
 - Colocalization, GFP
 - Other techniques...
- IntAct at EBI

http://www.ebi.ac.uk/intact/site/

Pathways

- Metabolic
 - Conversion of "small" molecules
 - Energy, synthesis, degradation
 - KEGG http://www.genome.ad.jp/kegg/
 - BioCyc http://www.biocyc.org/
- Signalling, regulation
 - Reactome http://www.reactome.org/
- Work in progress...

Task

- Locate gene/protein in GO, Reactome, etc
- Wee1
- SREBP1
- Your own